Biogeosciences Discuss., 7, 1813–1837, 2010 www.biogeosciences-discuss.net/7/1813/2010/ © Author(s) 2010. This work is distributed under the Creative Commons Attribution 3.0 License.

This discussion paper is/has been under review for the journal Biogeosciences (BG). Please refer to the corresponding final paper in BG if available.

Heterotrophic denitrification vs. autotrophic anammox – quantifying collateral effects on the oceanic carbon cycle

W. Koeve and P. Kähler

IFM-GEOMAR, Leibniz-Institut für Meereskunde, Düsternbrooker Weg 20, 24105 Kiel, Germany

Received: 8 February 2010 - Accepted: 14 March 2010 - Published: 16 March 2010

Correspondence to: W. Koeve (wkoeve@ifm-geomar.de)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

The conversion of fixed nitrogen to N_2 in suboxic waters is estimated to contribute roughly a third to total oceanic losses of fixed nitrogen and is hence understood to be of major importance to global oceanic production and, therefore, to the role of the ocean as a sink of atmospheric CO₂. At present heterotrophic denitrification and au-5 totrophic anammox are considered the dominant sinks of fixed nitrogen. Recently, it has been suggested that the trophic nature of pelagic N_2 -production may have additional, "collateral" effects on the carbon cycle, where heterotrophic denitrification provides a shallow source of CO_2 and autotrophic anammox a shallow sink. Here, we analyse the stoichiometries of nitrogen and associated carbon conversions in marine 10 oxygen minimum zones (OMZ) focusing on heterotrophic denitrification, autotrophic anammox, and dissimilatory nitrate reduction to nitrite and ammonium in order to test this hypothesis quantitatively. For open ocean OMZs the combined effects of these processes turn out to be clearly heterotrophic, even with high shares of the autotrophic anammox reaction in total N₂-production and including various combinations of dis-15 similatory processes which provide the substrates to anammox. In such systems, the degree of heterotrophy (ΔCO_2 : ΔN_2), varying between 1.7 and 6, is a function of the efficiency of nitrogen conversion. On the contrary, in systems like the Black Sea, where

suboxic N-conversions are supported by diffusive fluxes of NH_4^+ originating from neighbouring waters with sulphate reduction, much lower values of ΔCO_2 : ΔN_2 can be found. However, accounting for concomitant diffusive fluxes of CO_2 , ratios approach higher values similar to those computed for open ocean OMZs. Based on our analysis, we question the significance of collateral effects concerning the trophic nature of suboxic N-conversions on the marine carbon cycle.

BGD 7, 1813-1837, 2010 Denitrification vs. anammox W. Koeve and P. Kähler **Title Page** Abstract Introduction Conclusions References **Figures** Tables 14 Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion

1 Introduction

The importance and relative proportion of processes removing combined nitrogen from the marine environment is currently under discussion. There is evidence supporting the long standing view that heterotrophic denitrification dominates oceanic N loss, but also

- ⁵ autotrophic anaerobic ammonium oxidation (anammox) has been reported to make up for large shares, or even the bulk, in certain waters (e.g. Thamdrup et al., 2006; Ward et al., 2009). Both processes convert fixed nitrogen intoN₂ (Ward et al., 2007; Devol, 2008) and reduce the oceanic nutrient inventory in this way. Temporal changes of the nitrogen removal flux in the past (on glacial/interglacial timescales), or from present
- to future, are thought to influence the level of oceanic production and associated CO₂ fluxes (Altabet et al., 1995; Ganeshram et al., 1995; Codispoti, 1995). There are other aspects in which both processes differ (collateral effects, Voss and Montoya, 2009). One example is the formation of climate reactive gases, namely N₂O (Jin and Gruber, 2003), which is an intermediate of denitrification (Yoshinari and Knowles, 1976) but not
- known as one of anammox. Here we focus on collateral effects of the trophic status of nitrogen loss processes on the carbon cycle, as recently proposed by Voss and Montoya (2009).

Their argument is the following. Denitrification is a heterotrophic process during which organic matter is consumed and CO_2 is released to ambient waters. Pelagic denitrification thus effects a potential short-circuit in the biological pump by producing CO_2 from organic matter which otherwise might descend deeper into the ocean to be stored there for longer. In contrast, anammox is an autotrophic process potentially increasing the efficiency of the biological pump by fixing additional carbon in intermediate waters and thus reducing net CO_2 production in the water column. It appears to be of

importance to the carbon budget whether it is a heterotrophic process or an autotrophic one which dominates nitrogen loss processes in the ocean's water column. In view of projected increases in the extent of oxygen minimum zones (Matear and Hirst, 2003; Oschlies et al., 2008; Hofmann and Schellnhuber, 2009), heterotrophy or autotrophy

BGD 7, 1813-1837, 2010 Denitrification vs. anammox W. Koeve and P. Kähler **Title Page** Abstract Introduction Conclusions References **Figures** Tables 14 Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

in relation to nitrogen losses taking place there would be of increasing importance, potentially providing a positive or negative feedback on the carbon cycle, respectively. In this short note we analyse the stoichiometries of suboxic nitrogen conversions and their effect on the carbon balance.

5 2 Heterotrophy vs. autotrophy of N₂ production in OMZs

2.1 Background and definitions

Nitrogen in the ocean occurs in seven oxidation states and there are transformations between all, oxidations and reductions. Nitrogen serves both as a constituent of organic matter and nitrogen compounds are used as oxidants and reductants in dissimilatory reactions. Historically, a number of terms, and varieties of definitions of some, have been in use for many of these reactions. We will in the following use only four reactions, all relevant to nitrogen loss in suboxic environments: (1) denitrification, the production of N₂ from nitrite (denitrification sensu strict; Zumft, 1997), this is a heterotrophic process consuming organic carbon; (2) anammox, the combination of nitrite and ammonia to produce N₂, which is an autotrophic process consuming CO₂; (3) dissimilatory nitrate reduction to nitrite (DNRN); (4) dissimilatory nitrate reduction to ammonia (DNRA). Both DNRN and DNRA are heterotrophic. Formulas describing the bulk stoichiometries of these processes are given in Table 1.

Nitrogen loss in oceanic waters is confined to realms where oxygen is virtually absent (where [O₂]<5 mmol m⁻³; Devol, 2008). The largest oxygen minimum zones (OMZ) meeting this condition are the intermediate to deep waters of the Arabian Sea and the Eastern Tropical South and North Pacific. Additional sites of suboxic nitrogen removal are enclosed seas like the Black Sea, the Baltic Sea and some fjords. While until recently all suboxic N₂-production in the ocean has been ascribed to denitrification, it is now known that a number of biotic and abiotic nitrogen transformations contribute to

nitrogen loss (Hulth et al., 2005). At present denitrification and anammox are consid-

BGD				
7, 1813–1837, 2010				
Denitrification vs. anammox				
W. Koeve and P. Kähler				
Title	Page			
Abstract	Introduction			
Conclusions	References			
Tables	Figures			
14	►I.			
•	•			
Back	Back Close			
Full Screen / Esc				
Printer-friendly Version				
Interactive Discussion				
BY				

ered the most important ones for $\rm N_2$ production (e.g. Thamdrup et al., 2006; Ward et al., 2009).

- Already during early work on denitrification, it had been observed that this process cannot account for all observed nitrogen loss. Ammonia liberated from organic matter
 ⁵ during its heterotrophic consumption by denitrification and DNRN should accumulate in an oxygen-free environment, but it does not (Thomas, 1966; Cline and Richards, 1972; Codipoti and Christensen, 1985). Therefore a reaction involving the combination of NO₃⁻ and NH₄⁺ to produce N₂ has been invoked (Richards, 1965; Sen Gupta and Koreloff, 1973; Stumm and Morgan, 1996) and deduced from evolutionary and thermodynamical knowledge (Broda, 1977). Finally, a similar reaction has been observed in nature (Mulder et al., 1995; Thamdrup and Dalsgaard, 2002; Kuypers et al., 2003), the combination of NO₂⁻ and NH₄⁺ to form N₂, which was called anaerobic ammonium oxidation (anammox).
- During anammox NH⁺₄ and NO⁻₂ react in an equimolar ratio (Table 1). Since oceanic OMZs are extensive lenses of oxygen free water surrounded by oxygen rich waters above, below and at least towards the open sea, and since NH⁺₄ and NO⁻₂ are usually scarce in these surrounding oxic waters (Zafiriou et al., 1992; Brzezinski, 1988), the major sources of the reactants of anammox must be autochthonous, i.e. NH⁺₄ and NO⁻₂ must be produced in the suboxic water body itself. Anammox therefore depends on
- ²⁰ nutrient regeneration for the supply of both its substrates (NH_4^+ and NO_2^-) (Ward et al., 2009). In principle, NO_2^- can be supplied by DNRN (Table 1) and NH_4^+ may be liberated from organic matter broken down during DNRN or denitrification. The low production ratios of NH_4^+ : NO_2^- of these reactions (compare Fig. 1b), however, allow only for a limited quantitative importance of anammox for N_2 production (see Sect. 2.2 for details).
- ²⁵ An alternative and additional autochthonous source of NH_4^+ may be dissimilatory nitrate reduction to ammonium (DNRA; Kartal et al., 2007; Lam et al., 2009) which is associated with heterotrophy as well.

In this paper, we will refer to the conversion of fixed nitrogen (i.e. the sum of NO_3^- , NO_2^- , NH_4^+ , and organic nitrogen) to nitrogen gas (N₂) in suboxic waters as "suboxic

N₂-production", irrespective of the pathways or agents (organisms) involved. Different stoichiometries of suboxic nitrogen conversions have been discussed in the literature, differing by the composition of the organic matter utilized and the fate of remineralised nitrogen (e.g. Richards, 1965; Canfield, 2006; Paulmier et al., 2009). In the following section we will present the bulk stoichiometries of two possible systems, one consisting of various combinations of DNRN, denitrification and anammox (i.e. a system where heterotrophic denitrification necessarily dominates N₂ production) and an alternative system where DNRN, DNRA and anammox co-exist (i.e. a system where autotrophic anammox is the exclusive process forming gaseous nitrogen). We will also briefly discuss to what extent and under which specific conditions allochthonous sources of substrates can be relevant and evaluate their maximum effect on the trophic state of the suboxic layer. Our general subject will be to quantify the net ratio of CO₂ produced to molecular nitrogen formed (ΔCO₂:ΔN₂) given various combinations of the processes involved in suboxic N-conversions.

15 2.2 Stoichiometric constraints

First, let us consider the simple case that organic matter of standard oceanic composition ($C_{106}H_{175}O_{42}N_{16}P$; Anderson, 1995) is completely oxidized with nitrate to form CO_2 , N_2 and water according to Reaction (R1) (Canfield, 2006).

 $C_{106}H_{175}O_{42}N_{16}P + 104NO_3^- \Rightarrow 102HCO_3^- + 4CO_2 + 60N_2 + HPO_4^{2-} + 36H_2O$ (R1)

²⁰ Complete oxidation here refers to the boundary condition that neither NH_4^+ nor $NO_2^$ accumulate. This yields a ratio of organic carbon oxidized to nitrate consumed of close to 1 (106 C:104 NO_3^-) and a gross ratio of CO_2 produced to molecular nitrogen formed (ΔCO_2 : ΔN_2) of +1.77 (106 C:60 N_2). In suboxic waters no NH_4^+ accumulates (Richards, 1965) and here we assume that oxidation of NH_4^+ is due to anammox. In ²⁵ this reaction 1 mol of NH_4^+ combines with 1 mol of NO_2^- to form 1 mol of N_2 and water. Each mol of NH_4^+ consumed supports the autotrophic fixation of about 0.07 mol

of CO₂ (Strous et al., 1998; Tijhuis et al., 1993) yielding a ΔCO₂:ΔN₂ ratio of anammox of 0.07 mol:mol. Using generic stoichiometric equations describing the possible reactions contributing to suboxic N₂-production (Table 1) we can quantify the proportions in which the individual reactions involved (DNRN, denitrification, anammox) are
 ⁵ required for a variety of bulk organic matter compositions (Table 2) and for a range of boundary conditions (fraction of accumulating intermediate NO₂⁻). For the mean organic matter composition given above, the condition of complete conversion of fixed

- nitrogen to N₂, is given if 1 mol P-equivalent of organic matter is remineralised through DNRN, 1.2692 mol P equivalents of organic matter through denitrification and if the 2.2692·16 mol NH₄⁺ produced through these heterotrophic reactions are oxidized with NO₂⁻ to form N₂ via anammox. In this scenario about 73% of the N₂ produced is by denitrification and 27% by anammox (Table 2). The respective autotrophic CO₂ fixation is 2.54 (0.07·2.2692·16) mol and the bulk Δ CO₂: Δ N₂ ratio for the combined heterotrophic and autotrophic processes changes to +1.75. This is, for all practical purposes, indistinguishable from the gross ratio (+1.77) which does not account for the autotrophic carbon fixation. The net Δ CO₂: Δ N₂ ratio for the complete conversion of fixed nitro-
- gen to N_2 may vary between 1.58 and 1.90, depending on the composition of organic matter (Table 2).

Significantly higher contributions of anammox to N₂ production of up to 100% have
 ²⁰ been suggested from tracer experiments (Kuypers et al., 2005; Thamdrup et al., 2006; Hamersley et al., 2007). With a combination of DNRN, denitrification and anammox (scenario I, Figs. 1–2) this can be achieved if nitrite accumulates (Fig. 1a). Nitrite accumulation is a characteristic of the upper margin of oxygen minimum zones (Cline and Richards, 1972; Sen Gupta and Naqvi, 1984; Codispoti and Christensen, 1985).

²⁵ The ratio of nitrite accumulating to nitrate removed denotes the efficiency of suboxic N₂-production. We use this ratio as the independent variable (x-axes) in Figs. 1–4. Contrary to expectations, a higher contribution of anammox to total N₂ production goes along with an increase (and not a decrease or even turn in sign) of the ratio of CO₂ produced to N₂ formed (Δ CO₂: Δ N₂, Fig. 2a). In the most extreme case (no denitrification,

100% anammox; high NO_2^- accumulation) the ratio is about +6.5, i.e. almost four times as high as for 100 percent efficient N₂-production. This effect is due to the increased contribution of organic nitrogen to produced N₂ (Fig. 2b). The higher the contribution from anammox the more inefficient the suboxic N-removal becomes.

- Alternatively, OMZs may function as systems in which dissimilatory nitrate reduction to ammonium (DNRA) supplements the respiratory pathways of DNRN and denitrification in the production of ammonium to supply substrates to anammox (Lam et al., 2009; Eq. (4) in Table 1). In this case high shares of anammox in total N₂-production may be achieved even with no or little nitrite accumulation, i.e. with highly efficient ni trogen removal. Here (scenario II, Fig. 3) we assume combinations of DNRA (major NH⁴₄ source), DNRN (prime source of NO⁻₂ and minor NH⁴₄ source), and anammox
- as the only process producing N₂. Combining DNRA and DNRN in variable ratios yields a range of efficiencies of N₂-production (x-axes) accompanied by varying NO₂⁻ –accumulation (again using the boundary condition that no NH₄⁺ should accumulate).
- Both DNRA and DNRN are heterotrophic. Figure 3a shows their relative contribution along the efficiency gradient expressed as the fraction of NH⁺₄ provided via DNRA, to the total flux of NH⁺₄ to anammox. High contributions of DNRA allow for highly efficient N-conversion while low efficiencies are found where NH⁺₄ provision from DNRA falls below 50%. Although in this scenario 100 percent of N₂ production is from the autotrophic anammox reaction for all possible efficiencies, the overall process (i.e. the combined net effects of DNRA, DNRN, and anammox) is clearly heterotrophic (Fig. 3b), with ΔCO₂:ΔN₂ ratios almost indistinguishable from those given in Fig. 2a where DNRN, denitrification, and anammox co-exist.

Differences occur related to the quality of organic matter consumed during the N-²⁵ conversions. Using protein instead of mean bulk organic matter, the ΔCO_2 : ΔN_2 ratio is somewhat lower (Figs. 2a, 3b) and the yield of N₂-N produced per nitrate molecule consumed is larger (Fig. 4b) with maximum values of 2 in the case of very inefficient N-conversion. The major difference, however, is in the molar ΔPO_4^{3-} : ΔN_2 yield (Fig. 4a). For mean bulk organic matter of a composition commonly used in global

BGD 7, 1813–1837, 2010

Denitrification vs. anammox

W. Koeve and P. Kähler

biogeochemical models (Paulmier et al., 2009), the $\Delta PO_4^{3-} \Delta N_2$ yield increases from about 0.02 mol P:mol N₂ (efficient N-conversion) to about 0.06 (highly inefficient Nconversion). If, however, mainly proteins were preferentially respired in OMZs as indicated by recent particle flux and decay studies (van Mooy et al., 2002), the $\Delta PO_4^{3-}:\Delta N_2$ yield should be much smaller and even approach zero (Fig. 4a).

Assuming that autochthonous substrates to the anammox reaction dominate in typical open ocean OMZs, we find that although anammox itself is autotrophic, the sum of processes providing substrates for anammox and/or denitrification in all possible combinations of DNRN, denitrification, DNRA and anammox is heterotrophic. The degree of this heterotrophy depends on the efficiency of N₂-production. In a combination of

DNRN, denitrification, and anammox it is actually positively correlated with the importance of anammox for N_2 production (Fig. 5).

2.3 Allochthonous substrate sources

10

So far we addressed a typical open-ocean OMZ bounded by oxic waters where sub-¹⁵ strates to anammox are autochthonous, i.e. produced within the OMZ. This is in particular relevant for NH_4^+ , which appears to be limiting to anammox in a system characterized by DNRN, denitrification and anammox. Potential external sources of NH_4^+ are anoxic waters or sediments located below suboxic zones and the primary ammonia maximum at the base of the euphotic zone. In this section we discuss the potential ²⁰ effects of allochthonous substrate sources for ΔCO_2 : ΔN_2 ratios.

In sediments or enclosed seas like the Black Sea suboxic waters may sit on top of fully anoxic systems in which NH_4^+ has accumulated which has been produced from organic matter remineralised by sulphate reduction (Codispoti et al., 1991). Here, diffusive flux provides for additional NH_4^+ available to anammox in adjacent suboxic waters

²⁵ (Murray et al., 2005). Additionally, reactions of HS⁻, another product of sulphate reduction, diffusing upwards combining with nitrate diffusing downwards from overlying oxic waters may provide additional nitrite or ammonium (Konovalov et al., 2008) to sup-

BGD 7, 1813-1837, 2010 Denitrification vs. anammox W. Koeve and P. Kähler **Title Page** Abstract Introduction Conclusions References **Figures** Tables Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

port anammox and/or denitrification. In a system like the Black Sea such allochtonous sources of substrates may dominate (Fuchsman et al., 2008). Assuming DNRN as the sole NO₂⁻ source and diffusive NH₄⁺ fluxes as the major NH₄⁺ supply of anammox in the suboxic layers of the Black Sea, the net ΔCO₂:ΔN₂ ratio may be as low as 0.38 inside
the suboxic layer. This is still heterotrophic, but to a much lesser degree than under the conditions discussed above. Heterotrophy may become even smaller when assuming HS⁻ to diffuse upward to combine with nitrate (Konovalov et al., 2008) producing NO₂⁻ by an autotrophic process. Under such conditions it is possible that all substrates for the anammox reaction are produced autotrophically. Also HS⁻ may combine with ni-

¹⁰ trate producing N₂ (chemolithotrophic denitrification; Hannig et al., 2007; Brettar and Rheinheimer, 1991). Hence suboxic N₂ production, supplied with substrates from outside, may locally become fully autotrophic. However, diffusion of reduced substrates is accompanied by diffusive CO₂-fluxes from the remote heterotrophic decomposition of organic matter by sulphate reduction, which drive the overall ΔCO_2 : ΔN_2 back into the positive range.

While sulphate reduction can supply NH_4^+ to the suboxic layer from below, there is also the possibility of NH_4^+ entering from above. The primary NH_4^+ maximum at the base of the euphotic zone is a characteristic feature of open-ocean NH_{4}^{+} distribution (Brzezinski, 1988). Where surface production and carbon turnover are high like in upwelling regions, NH_4^+ concentrations as high as 0.5 µmol/L have been observed in this 20 layer (Gibb et al., 1999; Molina et al., 2005; Molina and Farías, 2009). It is under such conditions that also the lower slope of the primary NH⁺₄ maximum and the oxycline coincide, and diffusive fluxes of NH_4^+ across the upper fringe of the OMZ may occur. Whether this is a significant NH₄⁺ source for the suboxic anammox may, however, be debated. On thermodynamic grounds it can be argued that, assuming similar energy 25 yields for (oxic) nitrification (to NO₂⁻) and (suboxic) anammox, nitrite concentrations larger than its oxygen equivalent (i.e. $3/2^*$ [O₂]) are needed for anammox to be more effective in oxidising NH_4^+ than nitrification. It appears more likely that low-oxygen nitrification stops at the NO₂⁻ level, providing NO₂⁻ rather than NH₄⁺ to anammox (e.g.

Schmidt et al., 2002). Anyway, the NH₄⁺ invading suboxic waters from above is of heterotrophic origin from the oxic remineralisation of organic matter and hence should be accompanied by diffusive fluxes of respiratory CO₂, similar as in an anoxic system underlying suboxic zones discussed above. This should drive the Δ CO₂: Δ N₂ ratio of the upper margin of the OMZ back towards values computed for autochthonous substrate sources of anammox.

3 Discussion

5

25

Considering autochthonous sources of NH_4^+ and NO_2^- to anammox and a coupled system with DNRN, denitrification and anammox, we find the somewhat counterintuitive relationship that the higher the contribution of autotrophic anammox to pelagic N₂-10 production, the more heterotrophic the system is (Fig. 5). Hence the feedback switch proposed by Voss and Montoya (2009) to the effect that expending OMZs (Stramma et al., 2008; Oschlies et al., 2008) will either act as positive or negative feedbacks in the carbon cycle depending on whether anammox or denitrification dominate N₂production in OMZs does not exist. Including additional autochthonous NH_{4}^{+} sources 15 from DNRA does not change the picture significantly. Even when combining DNRA, DNRN, and anammox in scenarios with anammox always contributing 100 percent to N_2 production, the coupled system is always heterotrophic. What appears to be variable in both systems is the degree of heterotrophy, however, depending on the efficiency of N₂-production. 20

Allochthonous supply of NH_4^+ (or NH_4^+ and NO_2^-) may contribute to the substrate needs of anammox, as has been observed in the Black Sea (Murray et al., 2005; Fuchsman et al., 2008; Konovalov et al., 2008). In such a situation, ΔCO_2 : ΔN_2 ratios in the suboxic layer are much lower than with autochthonous substrate supply, and hence the degree of heterotrophy is lower. However, the NH_4^+ diffusing from anoxic waters underlying a suboxic system is from organic matter remineralised via heterotrophic sulphate reduction, which has a concomitant CO_2 production. Hence NH_4^+ fluxes go

BGD 7, 1813-1837, 2010 Denitrification vs. anammox W. Koeve and P. Kähler **Title Page** Abstract Introduction Conclusions References **Figures** Tables Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

along with CO₂ fluxes. NH⁺₄ and total dissolved sulfide (S₇ = H₂S + HS⁻ + S²⁻) as well as S₇ and total dissolved inorganic carbon (C₇) co-vary linearly over much of the anoxic water body of the Black Sea (Volkov and Rozanov, 2006). Averaging over anoxic waters from the upper 2000 m Volkov and Rozanov (2006) find S₇-NH⁺₄ slopes of 4.29 and C₇-S₇ slopes of 2.01, indicating an average C:N ratio of remineralisation of 8.6 which is close to that of bulk standard organic matter. Just below the suboxic layer, however, the HS⁻ to NH⁺₄ slope is less (about 2) which if combined with the average

- C_T - S_T plot yields a C:N ratio of only 4.2. There is the possibility that this reduction in the apparent C:N remineralisation ratio can be explained as due to nitrogen-rich matrix
- ¹⁰ terial (proteins) preferentially remineralised in the upper part of the anoxic layer. This has been suggested for other low oxygen waters by van Mooy et al. (2002). Alternatively, this difference in the apparent C:N ratio can be taken as another indication of the quantitative importance of anammox in close-by suboxic waters, providing a significant sink for NH₄⁺ but not for CO₂, as evident from the observed low CO₂:NH₄⁺ efficiency of the anammox reaction (Strous et al., 1998; Tijhuis et al., 1993). Though
- ¹⁵ efficiency of the anammox reaction (Strous et al., 1998; Tijhuis et al., 1993). Though details will depend on the respective NH_4^+ supplies from diffusion and autochthonous sources, respectively, the overall ΔCO_2 : ΔN_2 ratio should be larger than in the most extreme case computed above (ΔCO_2 : ΔN_2 =+0.38) and approach the autochthonous ratio (ΔCO_2 : ΔN_2 =+1.75).
- ²⁰ Summarizing the above discussion, we find no simple relationship between the contribution of anammox to total N₂-production and the degree of heterotrophy. In particular, where autotrophic anammox contributes 100 percent to suboxic N₂-production, we find ΔCO_2 : ΔN_2 yields varying between about +2 and +6 for open ocean OMZs. Biogeochemically the system is clearly heterotrophic although autotrophic reactions are a vital element shaping the observed tracer distribution. Low, even negative, values of the ΔCO_2 : ΔN_2 ratio can be computed where substrates are imported from anoxic
 - domains and if associated diffusive CO₂ fluxes are ignored.

Would the absence or presence of anoxic zones, or their extent, in the ocean have any collateral effects on the marine carbon balance at all? So far we emphazised

that autotrophic anammox in OMZs depends on substrates (NH⁺₄) provided by heterotrophic processes either locally, or from neighbouring water layers. Heterotrophic and autotrophic processes are similarly coupled also everywhere else in the aphotic oxic watersphere. Oxic remineralisation of organic matter there releases CO_2 , PO_4^{3-} and NH⁺₄ to ambient waters. NH⁺₄ does not accumulate (Brezezinski, 1988) under oxic 5 conditions but is subsequently oxidized autotrophically to nitrite and nitrate by nitrifying bacteria and archaea (Ward, 2008). The carbon fixation efficiency of nitrifyers is low (ΔCO_2 : ΔNH_4^+ =0.03 mol:mol, ΔCO_2 : ΔNO_2^- =0.01 mol:mol) and generation times are in the order of 10 to 20 h (Ward, 2008). For mean C:N:P ratios of organic matter of 106:16:1 the gross carbon yield of the heterotrophic oxidation of organic matter 10 is 106:1, the net yield, including the effect of autotrophic nitrification is 105:1 (106-16 efficiency), i.e. at most 1 percent less. In fact, one may conclude in analogy to the fate of most phototrophic production in the surface ocean that most of the chemoautotrophic CO₂-fixation in the interior of the ocean will be recycled and respired in situ as well, bringing the overall ΔCO_2 : ΔP ratio back close to 106:1. Biogeochemically, also 15 the oxic aphotic ocean is clearly heterotrophic although autotrophic reactions are a vital element shaping the observed tracer distribution, i.e. the accumulation of NO₃ instead of NH_4^+ . Making up a similar P-normalised budget for suboxic waters, we find that for both DNRN+denitrification+anammox and for DNRN+DNRA+anammox scenarios the net CO_2 :P is constant ($\approx 105:1$) and basically indistinguishable from that of oxic con-20

ditions. Hence there is no significant difference between suboxic and oxic systems concerning their trophic state.

Acknowledgements. This work was funded by the CAU Excellence Cluster "The Future Ocean" and the BMBF-International Buero German-Turkish bilateral project "IntenC". This study profited from discussions within the Seeburg Team and with Andreas Oschlies.

25

BGD

7, 1813–1837, 2010

Denitrification vs. anammox

W. Koeve and P. Kähler

References

5

30

- Altabet, M. A., Francois, R., Murray, D. W., and Prell, W. L.: Climate-related variations in denitrification in the Arabian Sea from sediment ¹⁵N/¹⁴N ratios, Nature, 373, 506–509, 1995.
- Anderson, L. A.: On the hydrogen and oxygen content of marine phytoplankton, Deep-Sea Res. I, 42, 1675–1680, 1995.
- Bange, H. W.: Gaseous nitrogen compounds (NO, N₂O, N₂, NH₃) in the ocean, in: Nitrogen in the marine Environment, edited by: Capone, D., Bronk, D., Mulholland, M., and Carpenter, E., Elsevier, Amsterdam, 2008.

Brettar, I. and Rheinheimer, G.: Denitrification in the Central Baltic: evidence for H₂S-oxidation as motor of denitrification at the oxic-anoxic interface, Mar. Ecol. Prog. Ser., 77, 157–169, 1991.

Broda, E.: Two kinds of lithotrophs missing in nature, Z. Allg. Mikrobiol., 17, 491–493, 1977. Brzezinski, M. A.: Vertical distribution of ammonium in stratified oligotrophic waters, Limnol. Oceanogr., 33, 1176–1182, 1988.

- ¹⁵ Canfield, D. E.: Models of oxic respiration, denitrification and sulfate reduction in zones of coastal upwelling, Geochim. Cosmochim. Acta, 70, 5753–5765, 2006.
 - Cline, J. D. and Richards, F. A.: Oxygen deficient conditions and nitrate reduction n the eastern tropical North Pacific Ocean, Limnol. Oceanogr., 17, 885–900, 1972.

Codispoti, L.A., Is the ocean losing nitrate?, Nature, 376, 724, 1995.

- ²⁰ Codispoti, L. A. and Christensen, J. P.: Nitrification, denitrification and nitrous oxide cycling in the eastern tropical South Pacific ocean, Mar. Chem., 16, 277–300, 1985.
 - Codispoti, L. A., Friederich, G. E., Murray, J. W., and Sakamoto, C. M.: Chemical variability in the Black Sea: implications of continuous vertical profiles that penetrated the oxic/anoxic interface, Deep-Sea Res., 38(S2), S691–S710, 1991.
- ²⁵ Codispoti, L. A., Brandes, J. A., Christensen, J. P., et al.: The oceanic fixed nitrogen and nitrous oxide budgets: moving targets as we enter the anthropocene?, Sci. Mar., 65(Suppl. 2), 85–105, 2001.
 - Devol, A. H.: Denitrification including anammox, in: Nitrogen in the Marine Environment, 2nd Edition, edited by: Capone, D., Bronk, D., Mulholland, M., and Carpenter, E., Elsevier, Amsterdam, 263–301, 2008.
 - Fuchsman, C. A., Murray, J. W., and Konovalov, S. K.: Concentration and natural stable isotope profiles of nitrogen species in the Black Sea, Mar. Chem., 111, 90–105, 2008.

BGD 7, 1813–1837, 2010 Denitrification vs. anammox W. Koeve and P. Kähler **Title Page** Abstract Introduction Conclusions References **Figures** Tables Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

Ganeshram, R. S., Pedersen, T. F., Calvert, S. E., and Murray, J. W.: Large changes in oceanic nutrient inventories from glacial to interglacial periods, Nature, 376, 755–757, 1995.

- Gibb, S. W., Mantoura, R. F. C., Liss, P. S., and Barlow, R. G.: Distributions and biogeochemistries of methylamines and ammonium in the Arabian Sea, Deep-Sea Res. II, 46, 593–615, 1999.
 - Hamersley, M. R., Lavik, G., Woebken, D., et al.: Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone, Limnol. Oceanogr., 52, 923–933, 2007.
 - Hanning, M., Lavik, G., Kuypers, M. M. M., et al.: Shift from denitrification to anammox after inflow events in the central Baltic Sea, Limnol. Oceanogr., 52, 1336–1345, 2007.
- Hofmann, M. and Schellnhuber, H.-J.: Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes, P. Natl. Acad. Sci., 106, 3017–3022, doi:10.1073/pnas.0813384106, 2009.

Hulth, S., Aller, R. C., Canfield, D. E., et al.: Nitrogen removal in marine environments: recent findings and future research challenges, Mar. Chem., 94, 125–145, 2005.

- Jin, X. and Gruber, N.: Offsetting the radiative benefit of ocean iron fertilization by enhancing N₂O emissions, Geophys. Res. Lett., 30, 2249, doi:10.1029/2003GL018458, 2003.
 Kartal, B., Kuypers, M. M. M., Lavik, G., et al.: Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium, Environ. Microbiol., 9, 635–642, 2007.
- Konovalov, S. K., Fuchsman, C. A., Belokopitov, V., and Murray, J. W.: Modelling the distribution of nitrogen species and isotopes in the water column of the Black Sea, Mar. Chem., 111, 106–124, 2008.
 - Kuypers, M. M. M., Sllekers, A. O., Lavik, G., et al.: Anaerobic ammonium oxidation by anammox bacteria in the Black Sea, Nature, 422, 608–611, 2003.
- ²⁵ Kuypers, M. M. M., Lavik, G., Woebken, D., et al.: Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation, P. Natl. Acad. Sci. USA, 102, 6478–6483, 2005.
 - Lam, P., Lavik, G., Jensen, M. M., et al.: Revising the nitrogen cycle of the Peruvian oxygen minimum zone, P. Natl. Acad. Sci. USA, 106, 4752–4757, 2009.
- ³⁰ Laws, E. A.: Photosynthetic quotients in the open ocean, Deep-Sea Res., 38, 143–167, 1991. Matear, R. J. and Hirst, A. C.: Long term changes in the dissolved oxygen concentrations in the ocean caused by protracted global warming, Global Biogeochem. Cy., 17, 1125, doi:10.1029/2002GB001997, 2003.

BGD 7, 1813–1837, 2010 Denitrification vs. anammox W. Koeve and P. Kähler **Title Page** Abstract Introduction Conclusions References **Figures Tables** Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

- Molina, V. and Farías, L.: Aerobic ammonium oxidation in the oxycline and oxygen minimum zone of the eastern tropical South Pacific off northern Chile (~20° S), Deep-Sea Res. II, 56, 1032–1041, 2009.
- Molina, V., Farías, L., Eissler, Y., et al.: Ammonium cycling under a strong oxygen gradient
- associated with the oxygen minimum zone off northern Chile (~23° S), Mar. Ecol. Prog. Ser., 288, 35–43, 2005.
 - Mulder, A., van de Graaf, A. A., Robertson, L. A., and Kuenen, J. G.: Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor, FEMS Microbiol. Ecol., 16, 177–183, 1995.
- Murray, J. W., Fuchsman, C., Kirkpatrick, J., Paul, B., and Konovalov, S. K.: Species and del15N signatures of nitrogen transformations in the suboxic zone of the Black Sea, Oceanography, 18, 36–47, 2005.
 - Oschlies, A., Schulz, K. G., Riebesell, U., and Schmittner, A.: Simulated 21st century's increase in oceanic suboxia by CO2-enhanced biotic carbon export, Global Biogeochem. Cy., 22, GB4008. doi:10.1029/2007GB003147. 2008.
- ¹⁵ GB4008, doi:10.1029/2007GB003147, 2008. Paulmier, A., Kriest, I., and Oschlies, A.: Stoichiometries of remineralisation and denitrification
 - in global biogeochemical ocean models, Biogeosciences, 6, 923–935, 2009, http://www.biogeosciences.net/6/923/2009/.

Redfield, A.C., Ketchum, B.H., and Richards, F.A.: The influence of organisms on the compo-

- sition of seawater, in: The sea, Vol 2, edited by: M. N. Hill, John Wiley and Sons, New York, 26-77, 1963.
 - Richards, F. A.: Anoxic basins and fjords, in: Chemical Oceanography, edited by: Riley, J. P. and Skirrow, G., Academic Press, London, 611–643, 1965.
- Schmidt, I., Sliekers, O., Schmid, M., et al.: Aerobic and anaerobic ammonia oxidizing bacteria - competitors or natural partners?, FEMS Microbiol. Ecol., 39, 175–181, 2002.
- Sen Gupta, R. and Koroleff, F.: A quantitative study of nutrient fractions and a stoichiometric model of the Baltic, Estuar. Coast. Mar. Sci., 1, 335–360, 1973.
 - Sen Gupta, R. and Naqvi, S. W. A.: Chemical oceanography of the Indian Ocean, north of the aquator, Deep-Sea Res., 31, 671–706, 1984.
- Silva, N., Rojas, N., and Fedele, A.: Water masses in the Humboldt Current system: properties, distribution, and the nitrate deficit as a chemical water mass tracer for Equatorial Subsurface Water off Chile, Deep-Sea Res. II, 56, 1004–1020, 2009.

Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding oxygen-minimum

BGD			
7, 1813–1837, 2010			
Denitrification vs. anammox			
W. Koeve and P. Kahler			
Title	Page		
Abstract	Introduction		
Conclusions	References		
Tables	Figures		
I.	►I		
•	•		
Back	Close		
Full Screen / Esc			
Printer-friendly Version			
Interactive Discussion			

zones in the tropical oceans, Science, 320, 655-658, 2008.

- Strous, M., Heijnen, J. J., Kuenen, J. G., and Jetten, M. S. M.: The sequencing batch reactor as a powerful tool to study very slowly growing micro-organisms, Appl. Microbiol. Biotechnol., 50, 589–596, 1998.
- 5 Stumm, W. and Morgan, J. J.: Aquatic chemistry chemical equilibria and rates in natural waters, John Wiley & Sons, Inc., New York, 1022 pp., 1996.
 - Thamdrup, B. and Dalsgaard, T.: Production of N₂ through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments, Appl. Environ. Microbiol., 68, 1312–1318, 2002.
- ¹⁰ Thamdrup, B., Dalsgaard, T., Jensen, M. M., et al.: Anaerobic ammonium oxidation in the oxygen-deficient waters off northern Chile, Limnol. Oceanogr., 51, 2145–2156, 2006.
 - Thomas, W. H.: On denitrification in the northeastern tropical Pacific Ocean, Deep-Sea Res., 13, 1109–1114, 1966.

Tijhuis, L., Van Loosdrecht, M. C. M., and Heijnen, J. J.: A thermodynamically based correlation

- for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth, Biotechnol. Bioeng., 42, 509–519, 1993.
 - Van Mooy, B. A. S., Keil, R. G., and Devol, A. H.: Impact of suboxia on sinking particulate organic carbon: enhanced carbon flux and preferential degradation of amino acids via denitrification, Geochim. Cosmochim. Acta, 66, 457–465, 2002.
- Volkov, I. I. and Rozanov, A. G.: Fundamentals of biohydrochemistry of anoxic basins, Oceanology, 46, 803–816, 2006.

Voss, M. and Montoya, J. P.: Oceans apart, Nature, 461, 49-50, 2009.

Ward, B. B.: Nitrification in marine systems, in: Nitrogen in the Marine Environment, 2nd Edition, edited by: Capone, D., Bronk, D., Mulholland, M., and Carpenter, E., Elsevier, Amsterdam. 2008.

- Ward, B. B., Capone, D. G., and Zehr, J. P.: What's new in the nitrogen cycle?, Oceanography, 20, 101–109, 2007.
- Ward, B. B., Devol, A. H., Rich, J. J., Chang, B. X., Bulow, S. E., Naik, H., Pratihary, A., and Jayakumar, A.: Denitrification as the dominant nitrogen loss process in the Arabian Sea,
- ³⁰ Nature, 461, 78–81, 2009.

25

Yoshinari, T. and Knowles, R.: Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria, Biochem. Biophys. Res. Comm., 69, 705–710, 1976.

Zafiriou, O. C., Ball, L. A., and Hanley, Q.: Trace nitrite in oxic waters, Deep-Sea Res., 39,

BGD

7, 1813–1837, 2010

Denitrification vs. anammox

W. Koeve and P. Kähler

1329–1347, 1992.

Zumft, W. G.: Cell biology and molecular basis of denitrification, Microbiol. Mol. Biol. Rev., 61, 533-616, 1997.

BGD

7, 1813–1837, 2010

Denitrification vs. anammox

W. Koeve and P. Kähler

Table 1. Stoichiometric equations for (1) respiratory nitrate reduction to nitrite (DNRN), (2) denitrification, (3) anammox, and (4) dissimilatory nitrate reduction to ammonium (DNRA) for bulk organic matter with an average composition of $C_aH_bO_cN_dP_eS_f$. For simplicity and following Paulmier et al. (2009) we give the stoichiometric equations in non-ionic forms. We assume reaction of NH₃ and CO₂ with water and subsequent dissociation as well as dissociation of HNO₃, HNO₂, H₃PO₄, and H₂SO₄ according to seawater pH. For a more detailed discussion of the derivation of equations (1), (2), and (3) see Paulmier et al. (2009).

Bulk reaction stoichiometry

(1)	$C_aH_bO_cN_dP_eS_f+x HNO_3 \rightleftharpoons a CO_2+d NH_3+e H_3PO_4+f H_2SO_4+y HNO_2+z H_2O$ with x=2a+0.5b-c-1.5d+2.5e+3f, y=x, z=0.5b-1.5d-1.5e-f.	DNRN

(2) $C_aH_bO_cN_dP_eS_f+x HNO_2 \rightleftharpoons a CO_2+d NH_3+e H_3PO_4+f H_2SO_4+y N_2+z H_2O$ denitrification with x=4/3a+1/3b-2/3c-d+5/3e+2f, y=2/3a+1/6b-1/3c-0.5d+5/6e+f, z=2/3a+2/3b-1/3c-2d-2/3e.

$(3) NH_3 + HNO_2 \rightleftharpoons N_2 + 2 H_2 C$) ^a
--	----------------

(4) $C_a H_b O_c N_d P_e S_f + x HNO_3 \rightleftharpoons a CO_2 + y NH_3 + e H_3 PO_4 + f H_2 SO_4 + z H_2 O$ DNRA with x=0.5a+0.125b-0.25c-0.375d+0.625e+0.75f, y=0.5a+0.125b-0.25c+0.625d+0.625e+0.75f=x+d, z=-0.5a+0.375b+0.25c-1.125d-2.125e-1.75f.

^a The energy gain from the anammox reaction is used to drive a CO₂ fixation of 0.07 mol CO₂:mol NH⁴₄ (Strous et al., 1998; Tijhuis et al., 1993). When presenting Δ CO₂: Δ N₂ ratios in Figs. 2a, 3b, and 5 this autotrophic CO₂-fixation is included. With any net CO₂-fixation there will be a net uptake of nitrogen (and phosphorus) nutrients. However, this is a very small fraction ($\approx 2 \infty$) if compared with inorganic nitrogen converted to N₂ in the anammox reaction. These subtle nutrient fluxes are hence ignored in our computations.

BGD

7, 1813–1837, 2010

Denitrification vs. anammox

W. Koeve and P. Kähler

Title Page				
Abstract	Introduction			
Conclusions	References			
Tables	Figures			
14	P1			
•	•			
Back	Close			
Full Screen / Esc				
Printer-friendly Version				
Interactive Discussion				

anammox

BGD

7, 1813–1837, 2010

Denitrification vs. anammox

W. Koeve and P. Kähler

Title Page				
Abstract	Introduction			
Conclusions	References			
Tables	Figures			
14	N			
•	•			
Back	Close			
Full Screen / Esc				
Printer-friendly Version				
Interactive Discussion				

Table 2. Bulk ratios for complete conversion of fixed nitrogen to N₂ (i.e. no accumulation of NO₂⁻ or NH₄⁺) for different compositions of organic matter. Bulk ΔCO_2 : ΔN_2 ratios include the effect of autotrophic CO₂ fixation (data for scenario I only).

	$\Delta CO_2:\Delta N_2$ mol:mol	Den:DNRN ^a mol:mol	Anammox:N ₂ -production %	N_2 from org N %	$\Delta PO_4^{3-}:\Delta N_2$ mol:mol	$\Delta N_2 - N: \Delta NO_3^-$ mol:mol
C ₁₀₆ H ₁₇₅ O ₄₂ N ₁₆ P Anderson (1995)	1.75	1.27	26.6	19.2	0.017	1.15
C _{3.83} H _{6.05} O _{1.25} N Laws(1991)	1.58	1.10	41.9	28.8	0	1.27
C ₁₀₆ H ₂₆₃ O ₁₁₀ N ₁₆ P Redfield et al. (1963)	1.9	1.25	29.0	20.7	0.018	1.17

^a Ratio of denitrification to DNRN, in mol NO_2^- produced (DNRN) to mol NO_2^- used (denitrification).

Fig. 1. Scenario I, assuming that suboxic N-conversions are due to a combination of DNRN, denitrification and anammox such that no NH_4^+ but variable fractions of NO_2^- accumulate. On the x-axes the ratio of NO_2^- accumulated to NO_3^- consumed is plotted. We interpret this ratio as the efficiency of the overall N-conversion process where the origin represents the condition of a fully efficient conversion of NO_3^- to N_2 (i.e. all NO_2^- is used up). Solid lines are for a mean composition of respired organic matter of $C_{106}H_{175}O_{42}N_{16}P$ (Anderson, 1995), dashed lines for respiration of pure proteins ($C_{3.83}H_{6.05}O_{1.25}N$, Laws, 1991; Anderson, 1995). (a) Fraction (in percent) of total N_2 -production which is due to anammox. In the combined reactions of scenario I the remainder to 100 percent is due to denitrification. (b) Ratio of production rates of NH_4^+ and NO_2^- during the coupled reactions of DNRN (providing NH_4^+ and NO_2^-) and denitrification (providing NH_4^+ only) for the given boundary conditions (no NH_4^+ accumulation) and the respective efficiencies of the overall N-conversion process (x-axes). Note that this ratio is always well below one, the stoichiometric ratio of NH_4^+ and NO_2^- in anammox, indicating NH_4^+ limitation of anammox.

BGD 7, 1813–1837, 2010 Denitrification vs. anammox W. Koeve and P. Kähler **Title Page** Abstract Introduction Conclusions References **Figures** Tables Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

BGD

7, 1813–1837, 2010

Fig. 2. Same N-conversion scenario as Fig. 1 (DNRN+denitrification+anammox; solid lines for OM composition of $C_{106}H_{175}O_{42}N_{16}P$; dashed lines for proteins). **(a)** The net ratio of CO_2 to N_2 release (ΔCO_2 : ΔN_2) as a function of N-conversion efficiency. The ratios include a correction for autotrophic CO_2 fixation during anammox. **(b)** Percent fraction of N_2 -production supported by nitrogen from respired organic matter.

DNRA, and anammox. We assume that no NH₄⁺, but variable fractions of NO₂⁻ accumulate (see description of x-axes in legend of Fig. 1). Solid lines are for bulk standard organic matter, dashed lines for proteins. (a) Percent fraction of NH_4^+ supply to the anammox reaction from DNRA. (b) ΔCO_2 : ΔN_2 ratio for scenario II.

 $0.2 \\ NO_2^- (accum) : NO_3^- (deficit)$

100

80

60

40

20

0

6

5

3

0

٥

 $\Delta CO_2 : \Delta N_2$ / (mol C : mol N₂)

0

(b)

0.2

0.4

0.8

0.8

0.6

NH $^+_4$ –flux from DNRA / %

Interactive Discussion

BGD

7, 1813–1837, 2010

Fig. 4. Scenario I and II. Solid lines are for bulk organic matter composition, dashed lines for proteins. **(a)** The ratio of phosphate released per N_2 formed. **(b)** The molar ratio of N_2-N released to nitrate used during N-conversion.

BGD

7, 1813–1837, 2010

Denitrification vs.

Fig. 5. ΔCO_2 : ΔN_2 vs. percent fraction of N₂ produced by the anammox reaction for scenario I (DNRN+denitrification+anammox). Solid line is for bulk organic matter compositions, dashed line for proteins.

